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Average hydrodynamic correction for the Brownian dynamics calculation of flocculation rates in
concentrated dispersions
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In order to account for the hydrodynamic interactiétl) between suspended particles in an average way,
Honig et al. [J. Colloid Interface Sci36, 97 (1971] and more recently Heydd/ol. Phys.87, 287 (1996 |
proposed different analytical forms for the diffusion constant. While the formalism of Heina. strictly
applies to a binary collision, the one from Heyes accounts for the dependence of the diffusion constant on the
local concentration of particles. However, the analytical expression of the latter approach is more complex and
depends on the particular characteristics of each system. Here we report a combined methodology, which
incorporates the formula of Honiet al. at very short distances and a simple local volume-fraction correction
at longer separations. As will be shown, the flocculation behavior calculated from Brownian dynamics simu-
lations employing the present technique, is found to be similar to that of Batchelor’s [dnsauid. Mech.74,

1(1976; 119 379(1982]. However, it corrects the anomalous coalescence found in concentrated systems as
a result of the overestimation of many-body HI.
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INTRODUCTION [33], favor the formation of open structures during aggrega-
tion [34], and even enhance the diffusivity of colloids

Brownian DynamicgBD) has been used for more than 20 [35,36. In thediffusionformulation, where the velocity of a
years to describe the behavior of suspensidns7]. Its ap-  particle,V, is calculated from the total force acting over each
plications span a wide variety of problems ranging from pro-particle,V=D-F [20], the general form of the diffusion ma-
tein adsorptior{8,9], sedimentatior10], heteroaggregation trix is [37,3§
[11], and more recently flocculation rates in both suspensions
[12-14 and emulsiong15—-19. Probably the most severe N o .~
limitations of BD are[20-23 (a) the small ime step re- ~ Dii=Dol +Do. 2, {As(rip)fijfij +Bs(rip[1 =73y I},
quired to account for the typical short-range potentials of the = 1)
interacting particles an¢b) the large computational power
required for the proper account of hydrodynamic interactions A ~
(HI's). Despite these shortcomings and the fact that new Dij=Do{Ac(rij)fijfij+ Be(rip [1 —FijFij 1}, 2
computational techniques permit the calculation of a larger
number of mesoscopic particl¢g3,24), BD is still widely =~ whereDy is the diffusion(Stokes coefficient of a solid par-
used. This is partially due to the close resemblance betwedif!e at infinite dilution
the movement of particles in real systems and in their simu-
lated analogs. Such parallelism allows direct comparison of kT
the results with well-known analytical equations from statis- Do= 6mna;’ 3
tical treatment$25-28. More importantly, these similarities

allow easy incorporation of physicochemical effects at 3, is the solvent viscosityT the temperature the Boltzmann

lower length scale. BD is particularly useful for the simula- cnstant, and; the radius of particlé. The scalar functions
tion of emulsions where surfactant adsorption, |nterfaC|aIAS' B., A, andB, in Egs. (1) and (2) are referred to as

movement, surface deformation, film drainage, and eVelself: j=j, and crossi#j) mobility functions, 7 =ry; /r;
fluid-mediated mass transfer between separated drops C%Bdrij:ri_rj- Taylor expansion of the diffusion matrix is

occur[29,30. equivalent to Taylor expansion of its mobility functions.
These are calculated supposing pairwise additive interac-
THEORETICAL EXPRESSIONS FOR HYDRODYNAMIC tions, and their most usual forms are Osd&], Rotne-
INTERACTIONS IN CONCENTRATED DISPERSIONS Prager[39], and Batchelor{40,41] expressions, the latter

Hvdrodvnamic effects can cause like-charae attraction beL_Jsually referred as thexactmathematical form.
y y ! usel 9 ' In the BD algorithm from Ermak and McCamméhy, the

tween sgspended .parti_cles near a wadl,32, originate elements of the diffusion matrix are explicitly included into
pathological behaviors in sheared systems of hard spher?ﬁe equation of motion. Following the original notatifit
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wherer, is the position of particlék, superscript “0” indi- While average expressiofkqg. (6)] are able to describe
cates the value of that variable at the beginning of the timédl's between two particles with great accuracy, they are un-
step At), Ry (At) is a random displacement with a Gaussianable to account for many-body interactions with appropriate

distribution, and variance @, ,At, and subscriptk and | consideration of the screening phenomena. Fortunately, the
span all directiongx,y,2 and particlesF, is the sum of in- dependence of self-diffusion coefficienti® the short-time
terparticle and external forces acting in direction limit Dg) with respect to the volume fraction can be deduced

From the computational point of view, E¢4) presents from light scattering measuremerfts9—62. Those results
two fundamental difficulties(a) the gradient of the diffusion had been compared with theoretical expressions deduced
matrix, and(b) given the form of the tensdiEgs. (1) and from the average of mobility functions over two- and three-
(2)], the HI couples the random deviates of each particleparticle distribution functiong63—64. It was found that the
Ry (At) to all other particles in the system. Whenever mobil-experimental data follows the prediction of E@) with dif-
ity functions depend on the relative distance between théerent degrees of accuracy, depending on the volume fraction
particles and not on their positions, the second term on thef internal phas¢65,66:
right-hand side of Eq(4) is equal to zero. Several strategies
had been suggested for the generation of random deviates, =~ D(#)=Do(1—1.73p—0.93°+1.80p°+--).  (7)
including Cholesky decomposition, QR decomposition
Chebyshev polynomial approximation, e{d.,42—-44. As
originally pointed out by Ermak and McCammoéh| those
methodologies depend on the configuration and the polydi
persity[37] of the particles. Cholesky methodology, in par-

ticular, fails invariably in emulsion stability simulations ) ) i
(ESS'3 with volume fractions above 1%#>0.01). Thus, it trend is adequate but sizable differences are obsda@d

is commonly used for calculations with a limited number of . In order to account locally for many-.body.hydrodynam—
particles and low, ics, Heyedq 20] recently proposed a configuration-dependent

Starting from exact expressions deduced by BrennepriCtion coefficient;(R) =kT/D:
m
% ol

[45,46 for the HI between a sphere and either a plane sur-
i) Fij

"The ¢? term in Eq.(7) contains two distinct contributions
due to two-body hydrodynamic interactions Q.9342) and
Jhree-body contributions 41.804%). For ¢<0.30, the
second-ordeftwo-body) expansion of the diffusion constant
appears to be more reliable. At higher volume fractions, the

face[45] or another sphere of equal radii@s [45,46, Honig E(R)=¢&1 1+C
et al. [47] proposed an average correction for the diffusion

constantD (u) of a particle during a binary encounter:

] ) ®

where &, is the friction coefficient at infinite dilutionC
=C(¢) is a constant which depends on the volume fraction
. (50  and is fitted with experimental datm is an arbitrary expo-
B(u) nent, o is the hard-sphere diameter of the particles, and
(~KT) sets the energy scale. As pointed out by Hea,
he interactions considered are pairwise additive, and they
re not expected to go beyond the first coordination shell.
Equation(8) is well suited for Brownian dynamics simu-
lations since it does not requires matrix inversions or corre-
lated Brownian forces. In this approximation, Ed) simpli-
fies considerably. The final expression is equal to the
Brownian dynamics equation in the absence of HI's:

Do

D(u)=

Equation(5) is based on an approximate rational function
which has the correct values and limiting slopes for large an
small distancesl(d/a=u) between the particles:

_ 6u’+13u+2 6
T YT ©

The function 8 takes the values of 1.08, 2.03, 7.83, wat
=18.14, 1.09, 0.091, respectively, going as high as 202.5 at F(t)At
u=0.0025. It has been reported that similar rational func- r(t+At)=r(t)+ W+R(§(R)), 9
tions[48] can reproduce the exact mobility functions with an
accuracy of four figures fou=0.1 and three figures for \yhereR(¢(R)) is again a random variable with a Gaussian
0.0l=u<0.1 [45,46,48 distribution.

Old as well as up-to-date findings had been interpreted in The purpose of this communication is to provide a much
terms of tensor¢Oseen[49,50, Rotne-Pragef36,51, and  simpler HI correction for BD simulations, which incorpo-
Batchelor[32,52,53, as well as average functiortsionig  rates the exactness of Eq5) and (6) for binary collisions,

[54,55). However, these approximations overestimate the efyith the average volume fraction behavior predicted by Eq.
fect of HI's in concentrated systems where screening occurgy).

[37]. This was pointed out by Bacoet al. [2,56] who used

Batchelor tensor to demonstrate that pairwise additivity can MODEL
even generate negative diffusion constants above a critical
volume fraction(equal to 0.45 for hard sphepd$6]. Simi- Figure 1 shows a schematic representation of the pro-

larly, it can predict negative sedimentation speeds dor posed model. In order to calculate HI's, an interrial,{) and
=0.27[2,56,57. Such screening of long-range HI's was re- an external R, radii are ascribed to each particle. These
cently observed in suspensions of charged silica particlesadii divide the space in three sections. The HI's coming
[58]. from particles in the outermost regial»> R,,; (whered is the
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FIG. 2. In order to validate the geometrical procedure defined in
Fig. 1, cubic cells of 0.05 ¢<0.50 were built. External radii of&
and 3 (a=3.9um) were defined around a central parti€e In
either case, the local volume fraction estimated by the geometrical
procedurg(Fig. 1) came out to be very close to the volume fraction
of particles within the entire cell. Hence, the valuesDbf( ¢,d)
calculated are very similar.

interact significantly or due to the screening of their HI's by
closer patrticles.

Particles in the intermediate and inner regions contribute
to the HI's of the central particle in different ways. Whenever
a whole particle or a fraction of its volume penetrates the
intermediate regior(middle picture in Fig. }, its volume
inside this region Ri,w<d<Rg,, iS geometrically calculated.
Once the total volume of particles within the intermediate
region is calculated, the total volume fractia) of particles
within 0=d<R,, is computedincluding the volume of the
central particle The diffusion constant of the central particle
can then be calculated from E), using terms accounting
for two-body HI's up to second order in the volume fraction
expansior{60—-62,65,66

In order to validate the geometrical procedure previously

FIG. 1. Local evaluation of the volume fraction around a centraldescribed for the local evaluation @f [and D(¢)], cubic

particle (C). For clarity, only a transverséXy) cut of the three-

cells of 125 particles orderly arranged were built. The vol-

dimensional situation is shown. In order to calculate the effect ofume fraction of particles in each celb(ey) can be trivially

hydrodynamic interactionéHl’s) on the movement o€, two dis-
tances(internal and externalare defined. Particles beyoiRy},; do
not influence the movement & (upper pictur@ Particles between
Rit and Ry, contribute with a fraction of their volume to the cal-
culation of a local volume fractiorp around particleC (middle
picture. Equation(7) can then used to calculate an effective diffu-
sion constanD (¢,d) for C. However, since close-range HI's are
much more significant than long-range ones, the approach of Ho

et al. [47] is used instead whenever there is at least one neighb

particle (or a fraction of i} within the inner regiord<R;,, (lower

picture. If several particles are located withR),; at a given time,
only the closest one is taken into account to calcujatand D

(¢,d) [Egs.(5) and(6)].

ni

calculated and(¢) estimated according to Eq7). Alter-
natively, an external radiusR,) can be defined around a
central particle in the cell anB(¢) estimated as a function
of its local ¢. The local volume fractiofand consequently
D(¢)] comes out to be similar t@. (Fig. 2). Similar re-
sults are obtained foR.,=3a or 5a. Notice that at¢
=(0.50,D(¢) decreases fronb, to 0.2M,. On the other
(Eland, the correction of Honigt al. can reduceD(u) from

Dy to 0.009 during a binary collision. Hence, if there is at
least one particle within the inner region of a given central
particle d=R;,), the expression of Honigt al. [Egs. (5)
and (6)] is used to calculate the diffusion constant of the
central particle regardless of the volume fraction of particles

distance between the surface of the central particle and the the intermediate and outermost regions. If there are more

surface of its neighbord=r;;—a;—a;) are disregarded.

than one particle within the inner region, only the closest one

They do not contribute to the hydrodynamic corrections ofis used to comput@ from Eg. (6).

the central particle either because they are too far away

to In summary, the local volume fraction around each par-
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ticle is used to compute its average diffusion constant. How- A
ever, as can be inferred from the values of E).at close V=— 12
distances and those of E(¢) at very high ¢, the binary

y y
v + 3
X2+XYy+X X2+ XYy+X+Y

interaction is much more significant at short range. Thus, it is X2+ Xy+X
solely considered whenever it is present. +21n Erxy+xty) | (13)
COMPUTATIONAL DETAILS whereA is the Hamaker constant=(1.24x 10~ ° J[68]), x

) , . =d/2R,, y=R,/R;, andd is the shortest distance between
Using the above-mentioned approximations, the BD exypq particles. The value d§ was experimentally determined
pression for_the equation of motion of particlsubject to the {5, Bitumen emulsions. As in previous calculatiqis—19,
average Hl is the particles coalesce as soon as they overlap. When this
D.(.d)F At happens, a new patrticle is created at the position of the center
_ . Al _ of mass of the colliding ones. The original volume is pre-
ntrAy=rit+ kT TROi(¢.d), (10 served, and the diffusion constant of the new particle at in-
finite dilution is recalculated in terms of the new radius ac-
where R(D;(¢,d)) is a Gaussian function with zero mean cording to Stokes formulgseeDg in Eq. (3)].
and variance B;(¢,d)At. As in the case of Heyd&0], this For each volume fraction four types of calculations were
is equivalent to the BD algorithm in the absence of HI's, made:
except for the presence of an effective diffusion coefficient. (1) Stokes: BD without HI's. This is equivalent to substi-
Notice that in Eq.(10) the random deviates of each par- tute D(¢,d) for Dy in Eq. (10).
ticle are now decoupled from one anotlisee Eq(4)]. This (2) Model: BD with the HI's of the model proposed.
simplifies the BD algorithm considerably. In dissipative par-  (3) Batchelor: BD with HI's employing the mobility func-
ticle dynamics(DPD) [23,24], the random force is only un- tions from Batchelof40,41], along with Egs.(1), (2), and
correlated between different pairs of mesoscopic particles. I4).
that case, “fluid” particles interact with dissipative, random, (4) Honig: BD applying the correction of Honigt al.
and conservative forces. These forces are connected throufig. (6)] between every pair of particles.
versatile relations which allow the system to reach equilib- Since the random function of calculatio(s, (2), and(4)
rium and even satisfy detailed balance in the limit of infini- do not use correlated Brownian forces, we usd®,) for
tesimal time stepsAt—0) [67]. In a BD simulation, the type-3 computations: that is, the random deviates comply
magnitude of the thermal exchange between the particles arwiith a Gaussian function with zero mean and variance
the solvent is determined by the size of the random contriéDyAt. It was shown in Ref[15] that a reasonably large
butions. These random deviates depend on the time step awndriation in the magnitude of the random forces does not
are coupled to the conservative forces through the diffusiomhange the value of the flocculation constant considerably.
matrix [third term on the right-hand side of E@})]. In Ref. “Stokes” calculations constitute both a standard and an
[15] we studied the variation of the thermal exchange beupper bound to the rest of the simulations, since it represents
tween the particles and the fluid in the absence of HI's. lthe movement of noninteracting particles at infinite dilution.
was found that in order to reproduce the value of the diffu-“Honig” computations represent a lower bound since Hj.
sion constant at infinite dilutiofEq. (3)] employing a well- s strictly applicable to binary collisions, and the cumulative
behaved Gaussian routine, considerably large values of thgse of this equation calculated by adding up contributions
thermal exchange are required. Since HI's slow down parfrom every pair of particles should produce a significant un-
ticle motion, use oD;(¢,d) in Eq. (10) lowers the average derestimation of the flocculation rate. “Model” and “Batch-
value of the thermal exchandé5]. In the present simula- elor” simulations are the ones we wish to compare. An ad-
tions, for instance, we did not limit the maximum value of ditional set of simulations witlV=0, including the different
the thermal exchange energy (). Still, average values of types of HI's already mentioned were also run, in order to
3.6, 5.1, 40.5, and 8.8 kT were obtained for, at ¢ compare the effect of the effective diffusion constant on the
=0.10, 0.20, 0.30, and 0.40, respectively, in the presence gandom deviates.
van der Waals forces. Furthermore, at infinite dilution In the case of dilute systems$&0.10), Honig-type
D(¢,d)—Dy. simulations, o’V=0 calculations, the computational time is
In order to test the proposed model, a set of cubic threevery large. To overcome this problem, we implemented an
dimensional(3D) cells composed of 125 particles was gen-algorithm with two time steps. A variable time step was pre-
erated. Volume fractions @f=) 0.05, 0.10, 0.15, 0.20, 0.30, viously suggested in Refl13] in order to sample a short-
0.40, and 0.50 were produced, changing the cell length be-ange (sterig potential appropriately, but allow larger dis-
tween L=10.16 and L=21.8& (a=3.9um). Particles placements at long separations between the particles. In the
were randomly distributed below=<0.30; cubic arrange- present version, the range of the interaction potential is used
ments were used otherwise. as input. It was set equal to 50 nm, since beyond this dis-
Since we are particularly interested in the decrease of theance the van der Waals attraction assumes negligible values.
flocculation rate caused by HI's, the calculations did not in-The value of the short time step was taken from previous
clude repulsive potentials. The attractive van der Waals posimulationg15—19. In those cases, the same van der Waals
tential (V) employed was equal to potential[Eq. (11)] was employed, along with a short-range
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repulsive potential. Whenever a high repulsive barrier exists,  2.00
the time step has to be varied until the number of particlesis ~ M~ ==-<«=--. .
preserved in the absence of the random fgsee Eq(4)]. In 1.80 -
the present case, was taken as 1.3610°° s, although it
could be chosen larger in view of the fact that the potential"-‘; 1.60 1
changes monotonically with the distance. The longer time
step could be set arbitrarily high, but the accuracy of the'o
flocculation constant will depend on that value. In the =
present simulations, 1.3610 © s<t, <3.40x10 ° s. Trial <
¢=0.50 simulations at,=t, =3.40<x 10"’ s were also run. 1.00 4

Once the longt;) and short {;) time steps are selected, (@)
a double-time-step calculation proceeds as follows: At the  ggg
beginning of the simulation all particles move tat. The 0 50 100 150 200
minimum separation between the particles is calculated in
every iteration. If this distance is smaller than twice the pre-
selected potential width, the particles are returned to their
previous positions, and the shorter time step is used. Follow-
ing, the particles move at this lower time step fpft; itera- Ve Tee-aC
tions. When this inner cycle finishes, the particles had movec 3
for a space oft, seconds, going back in phase with the 0.98 ::% ,
longer time step formerly used. In this way, the coalescences™ % = = = Honig
of droplets can only occur in the inner cycle, where the in- vE 0.78 4 + ‘:o +  Model
teracting potential is properly sampled. The calculation pro- g +

Q -
%}6 = = = Honig
ot
ot + Model
'bd. o Batchelor
Stokes

1.40

1.20

o Batchelor

[+
ceeds in this way, entering the inner cycle from time to time T 0.58 o Stokes
whenever required. <
0.38 A
FLOCCULATION RATES
. . 0.18 T T T T
A recent summary of the mechanisms of emulsion floccu- 200 400 600 800 1000 1200

lation can be found in Refl69]. In order to estimate the _
flocculation constants of the computed systems, a von time (s)

Smoluchowsk{70] equation was used: FIG. 3. Number of particles per unit volunge), as a function of

Ny time (t) for ¢»=0.05.(a) t<200 s, (b) t=200 s.
= 12
1+Kk¢not 12 ment[70] including both processes was already published by
) . . Danovet al. [76]. The definition of coalescence implies the
Here, n is the number of particles per unit volumey the  ayistence of a finite time for the drainage of the intervening
initial particle densityt the time, anck; a flocculation con- |iquid between colliding drops. However, in our simulations
stant. In the absence of interaction forces, both flocculation and coalescence are included in the effec-
tive value ofks. In the present case where coalescence oc-
1 _ ﬁ (13) curs instantaneously after the droplets overlap there is no
8maDy 4kT’ ambiguity over the nature of the flocculation constant. In
more involved cases where there exists a repulsive barrier or
At room temperature and taking water as the dispersing meg finite drainage time, comparison between the valuds; of
dium, k; is equal to 5.4% 10" *® m%/s. This value increases calculated with and without such a barrier and flux will evi-
in the presence of van der Waals forces and decreases asgiénce the effect of coalescence on the flocculation rate. Since
consequence of repulsive forces and/or HI's. The variation ofirops increase their size by coalescence as they collide in a
clusters of different sizes as a function of time closely fol-similar way as solid particles form bigger flocs with larger
lows the predictions of von Smoluchowski0], although  hydrodynamic radii, aggregates weigh the same as larger par-
there is still some discrepancy about the exact values of thgcles in Eq.(12), andk; can be evaluated using an algorithm
flocculation rate constants; between flocs of andj par-  that incorporates instantaneous coalescéhbg
ticles, respectively54,71-73. The most precise validations
of the theory come from singl&1] and multiparticlg 72,73
light scattering measurements.

Equation(12) strictly applies to the process of floccula-  Figure 3 shows the variation of the number of particles
tion only. It does not consider the process of coalescence thaer unit volume(n) as a function of time fop=0.05. At low
may occur at a different rate. We studied in the past othevolume fractions the tens¢Batcheloy and model prediction
formalisms[74,79 to account for coalescence as well as(Model) approach Stokes’ result. As expected, the cumula-
flocculation[18,19. The generalization of the former treat- tive use of the formula of Honigt al. slows down floccula-

kf_lz notf:

RESULTS
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3.00 9.00
o ) + lé/locli(el
o + aR) tokes
2.50 700 “\ o Batchelor
- : el - = = = Honig
Y &
:E 2.00 - £
z % 500
c 150 - =
- o Batchelor c
3.00 H
100 + Model
0.50 T T T 1.00 . . .
0 200 400 600 800 0 5 10 15 20
time (s) time (s)

FIG. 6. n vst for ¢=0.20. The tensor predictio(Batcheloy
undergoes a drastic variation in the number of particles after
=4.12x 10" m~3 (arrow) as a consequence of a multiple collision
tion considerably and sets an upper bound to the variation ghduced by the overestimation of HI's at short distances.
nvst.

According to Eq.(12), plot of 1h vst should produce a Dell 5300, employing a single time step, and only a random
straight line with a slope equal tg (see Fig. 4 Following  force without HI's. For this cask;=3.77x10" " m%/s (r?
this procedure, values ofk;=2.49<10" Y ms (r? =0.9961). This regression coefficient is considerably better
=0.9900) andk;=2.36x 10"’ m®s (r>=0.9894) were ob- to that of similar calculations with a smaller number of par-
tained for Batchelor and Model calculations, respectively. Adicle [15]. As shown in Ref[15], the value ofk; depends
viewed in Fig. 3 the dispersion of the data increases as thmarkedly on the volume fraction, approaching the limit of
number of particles diminishes. In general, high volume frac5.49x 10”18 m®/s as ¢—0, in the absence of a repulsive
tions and high flocculation rates decrease the quality of théarrier.
fitting [Eq. (12)] due to multiple collisiong15-19. In any As the volume fraction increases, the chance of a multiple
case, only part of the data can be used for the computation @ollisions also increases. Figure 6 shows a ploh ot t for
the flocculation constant. When the number of parti¢€ds ¢ =0.20. The present methodology for HI's varies monotoni-
decreases considerablN€20), the flocculation behavior cally, sensibly separated from the Stokes prediction. The
does not obey the predictions of EG2). A larger number of  Batchelor prediction coincides with the Model prediction un-
particles can diminish this effect by extending the range ofil t=4.22 s f=4.12< 10'* see Fig. &. At that time, over-
usable data. Unfortunately they can also be very time conestimation of the diffusion matrix elements causes a
suming. Figure 5 shows a plot ofril¥/s t for 1000 particles multiple-particle collision that decreases the density of par-
at »=0.30. This calculation took more than 2 months in aticles appreciably. Shortly after the drastic drop rpfthe
tensorial prediction recovers the slope of the Model ap-

FIG. 4. 1h vst for ¢=0.05[Eq. (12)].

3.50 proach.
3.00 4 7.50 @
s 250 1 6.50 o Batchelor
= %0 —— Batchelor - Dji
i 2.00 & 550 - c%
8 ,,E o 8
< 150 - 3 . o
c 9 4.50 %o ° o
= i -
1.00 c as.
0.50 -
2.50 - gb° o
0.00 ~ T . .
0 200 400 600 800 1.50 ' -
) 0.0 20 40 6.0
time (s) time (s)

FIG. 5. 1h vst for ¢=0.15. In this calculation 1000 particles FIG. 7. Tensorial prediction of vst for ¢=0.20, calculated
were used. Neither HI's nor van der Waals forces were includedwith (O) the whole diffusion matrix an¢—) the diagonal elements
Only random forces were taken into account. (D;;) of the diffusion matrix.
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7.00 TABLE IlI. Flocculation rates deduced from the valuestgb
through Eq.(14).
6.00 + Model
— Stokes & ke (M%s) ke (M%s) ke (M%ls) ks (m?/s)
5.00 4 X100 Stokes Batchelor Model Honig
s o Batchelor
£ 4001 5 543x10°Y 225<10°Y 2.90<10 Y 3.06x10 '®
2 10 131x10'® 7.31x10° Y 6.46x10 Y7 2.98x10 '8
S  3.00 15 6.8%K107'° 4.18<107'° 2.59x10°'® 1.39x10° Y
‘C’ T 20 14810 294x10°% 294x10° % 1.44x10°Y
2.00 ~ 30 1.09<10° 2.82<107%5 1.89x107'° 1.36x10°1°
40 48%101 1.79x10°® 7.36x10°1° 2.26x10°Y
1.00 - . o 50 722103 211x10°13 2.70<10°¥ 2.59x10°15
0.00 T T
0 S 10 15 and Eq.(5). It should be stressed again that the equations of
time (s) Honig et al. are only valid for binary collisions. The calcu-

lation of coefficients [in Eq. (5)] as a sum of binary contri-

FIG. 8. n as a function of time forp=0.15. The overestimation butions from all surrounding particles is an approximation
of HI's produces an abrupt change in the number of particles thathat largely overestimates the effect of HI's. Hence, the val-
carries the tensorial prediction below the Stokes estimation. ues identified as “Honig” in Tables | and Il show differences

of more than one order of magnitude with all the rest.

In order to avoid the referred to anomaly we did several For volume fractions larger than 0.30, the shape ofrthe
tests in which(a) only the diagonal elements of the diffusion vs t curves changes significantly. Since each particle is
matrix are used(b) only nondiagonal elements are uség),  closely surrounded by its neighbofthe maximum volume
the values of the diagonal or nondiagonal elements weréaction is equal top=0.52 for cubic packing of monodis-
multiplied by a number lower than 1.0, ar{d) a critical  persed sphergsits movement is severely affected by HI’s.
cutoff radius for the HI's was defined. In this latter cdd ~ This generates a lag time: a finite time between the begin-
D, was employed at distances lower R, and Batch-  ning of the simulation and the start of a sharp decrease in
elor tensor was employed otherwise. It appears that the majdsee Fig. 9. When the number of particles changes, it de-
overestimation of HI’s comes from the nondiagonal ele-creases in the form of a step function and does not present
ments. Figure 7 shows the complete Batchelor prediction fothe characteristic convexity predicted by E#j2). This dras-
¢=0.20(from Fig. 6, along with the “diagonal” correction. tic reduction of the flocculation rate at large volume fractions
The anomalous variation imis avoided, but the flocculation is consistent with the decrease in the creaming velocity of
rate is overestimated. Furthermore, even the most successfimilar emulsions §;=0.86um) for ¢=0.40[77]. It could
correctiong (a) and(d)] failed at longer times and/or differ- also be related to the variation of the average droplet size in
ent systems. Figure 84=0.15) shows that this phenomenon
can also occur in more dilute systems and is rather configu:
ration dependent. In this case, the drop in the number ol 16.4
particles is so severe that the tensorial prediction comes ou
to be faster than the Stokes result.

Table | shows the values of the flocculation constant, cal-g~ 12.4 4

culated from fitting of 1 vs t plots (whenever possibje (= i + :IAzr:jlgl
The values ok; for ¢=<0.30 corresponding to the proposed % *

model, Stokes and Honigt al. [47], increase steadily with © g4 - + o Batchelor
¢, while that of the tensor does not. Furthermore, the predic- = -'EF Stokes

tions of the model always fall between the limits of Stokes <

44 - +

TABLE I. Flocculation constants calculated from linear fits of o c;‘i:,. —

1/n vst plots.
o

@ k; (M%) ki (M°ls) k; (M%) ki (mls) 04 l I '
X100 Stokes Batchelor Model Honig 0.0 0.5 1.0 1.5 20

5 3.33%10°Y 249<10°Y 2.36x10°Y 3.13x10 '8 time (s)

10 824x107Y" 4.15<10° 549<107'" 2.87x107*® FIG. 9. At ¢=0.40, the curves ofi vs t change their shape. A

15  1.65<10°'® 1.45<10°'° 1.37x10 '® 9.59x10 '  |ag time is generated as a consequence of a severe slow down in

20 8121071 4.47x10°'% 1.64x10° % 9.47x10 %8 particle movement at the beginning of the simulation. The variation

30 1.2%10°* 222x10°% 8.09x10°16 2.59x10°%° of nvst is abrupt. The typical concave shape predicted by(E).
is not observed.
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hydrocarbon  oil-water  emulsions  stabilized  with are similar, except that the valuelofpredicted by the model
B-lactoglobulin[8]. As shown in the Fig. 4a of Ref8], the  for ¢=0.40 is lower than that ap=0.30 for the reasons just
average drop size of the emulsion may remain stable undexplained.
shearing for a period fo3 h after preparation, increasing
drastically afterwards from 0.36m to 4.5um in the follow-
ing 20 min. CONCLUSIONS

It can be observed in Fig. 9 that in contrast to the results . . )
from Fig. 8, Batchelor predictions are slower than Stokes A Simple methodology for the calculation of HI's in
ones. This evidences that the particular behavior of the tens&ownian dynamics simulations of concentrated systems was
previously referred to depends on the configuration on th@roposed. The model overcomes the shortcomings of the ten-
surrounding particles and not necessarily on the total volumgorial calculations previously outlined by Heyg20]. Spe-
fraction of the system. It is important to point out that the Cifically, it clearly avoids overestimation of the HI's by su-
overestimation of HI's is not due to the specific form of the Perposition of pair contributions. The calculated values of
mobility functions from Batchelor, since Rotne-Prager’s andthe flocculation rates appear to be reasondtle order of
Oseen’s were also tested. magnitude is appropriatealthough direct comparison with

In order to estimate the flocculation constant for high-€xperimental data from Bitumen emulsionsA=1.24
volume-fraction calculations, a simple relationship betweenx 10~ *° J, a=3.9 um [68]) was not possible.
this variable and the time necessary to diminish the number Modifications of the present technique for the treatment of

of drops to half its original value was used: d_eformablg droplets gnd _particle-wall interactions are pos-
sible. In a first approximation, the latter case could be treated
1 using the present methodology. For this case, the volume

k= Not1o’ (14 fraction of the wall inside the regioR;;<d’ <R, could be

included in the local volume fraction calculation around the
wheret,=1t(ny/2), the time required for the number of par- particle. At shorter separatioms <R;,;, similar relations as
ticles, n, to drop to3 no. Equation(14) easily follows from  those of Eqs(5) and (6) are expected to hold, since they
Eq. (12) substitutingn by ny/2. The values ok; obtained in  were originally deduced for a particle-surface interaction
this way are not very accurate due to fast decay in the nun45]. However, the coefficients of a rational function for the
ber of particles with time. When multiple collisions occur, HI's between a particle and a surface can be very different.
the time for whichn=ny/2 cannot always be determined. This is illustrated in Table 1 of Ref48], in which case, a
Since the number of particles is directly read from the simu+hird-order rational function was used to substitute the infi-
lations, we used the closest approximatiomg? whenever nite series result given by Brennpt5,46 for the sphere-
this value was not available. The trends from Tables | and Isphere and sphere-plane surface systems.
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