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Average hydrodynamic correction for the Brownian dynamics calculation of flocculation rates in
concentrated dispersions

German Urbina-Villalba,* Máximo Garcı´a-Sucre, and Jhoan Toro-Mendoza
Centro de Fı´sica, Laboratorio de Fisicoquı´mica de Coloides, Instituto Venezolano de Investigaciones Cientı´ficas (IVIC), Apartado 21827,
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~Received 3 June 2003; published 31 December 2003!

In order to account for the hydrodynamic interaction~HI! between suspended particles in an average way,
Honig et al. @J. Colloid Interface Sci.36, 97 ~1971!# and more recently Heyes@Mol. Phys.87, 287 ~1996!#
proposed different analytical forms for the diffusion constant. While the formalism of Honiget al. strictly
applies to a binary collision, the one from Heyes accounts for the dependence of the diffusion constant on the
local concentration of particles. However, the analytical expression of the latter approach is more complex and
depends on the particular characteristics of each system. Here we report a combined methodology, which
incorporates the formula of Honiget al. at very short distances and a simple local volume-fraction correction
at longer separations. As will be shown, the flocculation behavior calculated from Brownian dynamics simu-
lations employing the present technique, is found to be similar to that of Batchelor’s tensor@J. Fluid. Mech.74,
1 ~1976!; 119, 379 ~1982!#. However, it corrects the anomalous coalescence found in concentrated systems as
a result of the overestimation of many-body HI.

DOI: 10.1103/PhysRevE.68.061408 PACS number~s!: 82.70.Kj, 82.70.Dd, 02.70.Ns, 05.40.Jc
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INTRODUCTION

Brownian Dynamics~BD! has been used for more than 2
years to describe the behavior of suspensions@1–7#. Its ap-
plications span a wide variety of problems ranging from p
tein adsorption@8,9#, sedimentation@10#, heteroaggregation
@11#, and more recently flocculation rates in both suspensi
@12–14# and emulsions@15–19#. Probably the most sever
limitations of BD are@20–22# ~a! the small time step re
quired to account for the typical short-range potentials of
interacting particles and~b! the large computational powe
required for the proper account of hydrodynamic interactio
~HI’s!. Despite these shortcomings and the fact that n
computational techniques permit the calculation of a lar
number of mesoscopic particles@23,24#, BD is still widely
used. This is partially due to the close resemblance betw
the movement of particles in real systems and in their sim
lated analogs. Such parallelism allows direct comparison
the results with well-known analytical equations from stat
tical treatments@25–28#. More importantly, these similaritie
allow easy incorporation of physicochemical effects a
lower length scale. BD is particularly useful for the simul
tion of emulsions where surfactant adsorption, interfac
movement, surface deformation, film drainage, and e
fluid-mediated mass transfer between separated drops
occur @29,30#.

THEORETICAL EXPRESSIONS FOR HYDRODYNAMIC
INTERACTIONS IN CONCENTRATED DISPERSIONS

Hydrodynamic effects can cause like-charge attraction
tween suspended particles near a wall@31,32#, originate
pathological behaviors in sheared systems of hard sph
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@33#, favor the formation of open structures during aggreg
tion @34#, and even enhance the diffusivity of colloid
@35,36#. In thediffusionformulation, where the velocity of a
particle,V, is calculated from the total force acting over ea
particle,V5D•F @20#, the general form of the diffusion ma
trix is @37,38#

Dii 5D0Î 1D0 (
j 51,j Þ i

$As~r i j ! r̂ i j r̂ i j 1Bs~r i j !@ Î 2 r̂ i j r̂ i j #%,

~1!

Di j 5D0$Ac~r i j ! r̂ i j r̂ i j 1Bc~r i j !@ Î 2 r̂ i j r̂ i j #%, ~2!

whereD0 is the diffusion~Stokes! coefficient of a solid par-
ticle at infinite dilution

D05
kT

6phai
, ~3!

h is the solvent viscosity,T the temperature,k the Boltzmann
constant, andai the radius of particlei. The scalar functions
As , Bs , Ac , and Bc in Eqs. ~1! and ~2! are referred to as
~self: i 5 j , and cross:iÞ j ) mobility functions, r̂ i j 5r i j /r i j
and r i j 5r i2r j . Taylor expansion of the diffusion matrix i
equivalent to Taylor expansion of its mobility function
These are calculated supposing pairwise additive inte
tions, and their most usual forms are Oseen@37#, Rotne-
Prager @39#, and Batchelor@40,41# expressions, the latte
usually referred as theexactmathematical form.

In the BD algorithm from Ermak and McCammon@1#, the
elements of the diffusion matrix are explicitly included in
the equation of motion. Following the original notation@1#

r k5r k
01(

l

]Dkl
0

]r l
Dt1(

l

Dkl
0 Fl

0

kT
Dt1Rk~Dt !, ~4!ic
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URBINA-VILLALBA, GARCI´A-SUCRE, AND TORO-MENDOZA PHYSICAL REVIEW E68, 061408 ~2003!
wherer k is the position of particlek, superscript ‘‘0’’ indi-
cates the value of that variable at the beginning of the t
step (Dt), Rk(Dt) is a random displacement with a Gaussi
distribution, and variance 2DklDt, and subscriptsk and l
span all directions~x,y,z! and particles.Fl is the sum of in-
terparticle and external forces acting in directionl.

From the computational point of view, Eq.~4! presents
two fundamental difficulties:~a! the gradient of the diffusion
matrix, and~b! given the form of the tensor@Eqs. ~1! and
~2!#, the HI couples the random deviates of each part
Rk(Dt) to all other particles in the system. Whenever mob
ity functions depend on the relative distance between
particles and not on their positions, the second term on
right-hand side of Eq.~4! is equal to zero. Several strategi
had been suggested for the generation of random devi
including Cholesky decomposition, QR decompositio
Chebyshev polynomial approximation, etc.@1,42–44#. As
originally pointed out by Ermak and McCammon@1# those
methodologies depend on the configuration and the poly
persity @37# of the particles. Cholesky methodology, in pa
ticular, fails invariably in emulsion stability simulation
~ESS’s! with volume fractions above 1% (f.0.01). Thus, it
is commonly used for calculations with a limited number
particles and lowf.

Starting from exact expressions deduced by Bren
@45,46# for the HI between a sphere and either a plane s
face@45# or another sphere of equal radius~a! @45,46#, Honig
et al. @47# proposed an average correction for the diffusi
constantD(u) of a particle during a binary encounter:

D~u!5
D0

b~u!
. ~5!

Equation ~5! is based on an approximate rational functi
which has the correct values and limiting slopes for large
small distancesd(d/a5u) between the particles:

b~u!5
6u2113u12

6u214u
. ~6!

The functionb takes the values of 1.08, 2.03, 7.83, atu
518.14, 1.09, 0.091, respectively, going as high as 202.
u50.0025. It has been reported that similar rational fu
tions @48# can reproduce the exact mobility functions with
accuracy of four figures foru>0.1 and three figures fo
0.01<u,0.1 @45,46,48#.

Old as well as up-to-date findings had been interprete
terms of tensors~Oseen@49,50#, Rotne-Prager@36,51#, and
Batchelor @32,52,53#, as well as average functions~Honig
@54,55#!. However, these approximations overestimate the
fect of HI’s in concentrated systems where screening occ
@37#. This was pointed out by Baconet al. @2,56# who used
Batchelor tensor to demonstrate that pairwise additivity
even generate negative diffusion constants above a cri
volume fraction~equal to 0.45 for hard spheres! @56#. Simi-
larly, it can predict negative sedimentation speeds forf
50.27 @2,56,57#. Such screening of long-range HI’s was r
cently observed in suspensions of charged silica parti
@58#.
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While average expressions@Eq. ~6!# are able to describe
HI’s between two particles with great accuracy, they are
able to account for many-body interactions with appropri
consideration of the screening phenomena. Fortunately,
dependence of self-diffusion coefficients~in the short-time
limit DS

S) with respect to the volume fraction can be deduc
from light scattering measurements@59–62#. Those results
had been compared with theoretical expressions dedu
from the average of mobility functions over two- and thre
particle distribution functions@63–66#. It was found that the
experimental data follows the prediction of Eq.~7! with dif-
ferent degrees of accuracy, depending on the volume frac
of internal phase@65,66#:

D~f!5D0~121.73f20.93f211.80f21¯ !. ~7!

The f2 term in Eq. ~7! contains two distinct contributions
due to two-body hydrodynamic interactions (20.93f2) and
three-body contributions (11.80f2). For f,0.30, the
second-order~two-body! expansion of the diffusion constan
appears to be more reliable. At higher volume fractions,
trend is adequate but sizable differences are observed@60#.

In order to account locally for many-body hydrodynam
ics, Heyes@20# recently proposed a configuration-depende
friction coefficientj i(R)5kT/D:

j~R!5j0H 11CF(
iÞ j

«S s

r i j
D mG J , ~8!

where j0 is the friction coefficient at infinite dilution,C
5C(f) is a constant which depends on the volume fract
and is fitted with experimental data,m is an arbitrary expo-
nent, s is the hard-sphere diameter of the particles, an«
~;kT! sets the energy scale. As pointed out by Heyes@20#,
the interactions considered are pairwise additive, and t
are not expected to go beyond the first coordination she

Equation~8! is well suited for Brownian dynamics simu
lations since it does not requires matrix inversions or cor
lated Brownian forces. In this approximation, Eq.~4! simpli-
fies considerably. The final expression is equal to
Brownian dynamics equation in the absence of HI’s:

r ~ t1Dt !5r ~ t !1
F~ t !Dt

j~R!
1R„j~R!…, ~9!

whereR„j(R)… is again a random variable with a Gaussi
distribution.

The purpose of this communication is to provide a mu
simpler HI correction for BD simulations, which incorpo
rates the exactness of Eqs.~5! and ~6! for binary collisions,
with the average volume fraction behavior predicted by E
~7!.

MODEL

Figure 1 shows a schematic representation of the p
posed model. In order to calculate HI’s, an internal (Rint) and
an external (Rext) radii are ascribed to each particle. The
radii divide the space in three sections. The HI’s comi
from particles in the outermost regiond.Rext ~whered is the
8-2



t
.
o

y

by

ute
er
the

.
te

le

n

sly

ol-

a

t
ral

he
les
ore
ne

ar-

tra

t o

l-

u-
e
on
b

in

rical
n
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distance between the surface of the central particle and
surface of its neighbor,d5r i j 2ai2aj ) are disregarded
They do not contribute to the hydrodynamic corrections
the central particle either because they are too far awa

FIG. 1. Local evaluation of the volume fraction around a cen
particle ~C!. For clarity, only a transverse~XY! cut of the three-
dimensional situation is shown. In order to calculate the effec
hydrodynamic interactions~HI’s! on the movement ofC, two dis-
tances~internal and external! are defined. Particles beyondRext do
not influence the movement ofC ~upper picture!. Particles between
Rint and Rext contribute with a fraction of their volume to the ca
culation of a local volume fractionf around particleC ~middle
picture!. Equation~7! can then used to calculate an effective diff
sion constantD (f,d) for C. However, since close-range HI’s ar
much more significant than long-range ones, the approach of H
et al. @47# is used instead whenever there is at least one neigh
particle ~or a fraction of it! within the inner regiond<Rint ~lower
picture!. If several particles are located withinRint at a given time,
only the closest one is taken into account to calculateb and D
(f,d) @Eqs.~5! and ~6!#.
06140
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interact significantly or due to the screening of their HI’s
closer particles.

Particles in the intermediate and inner regions contrib
to the HI’s of the central particle in different ways. Whenev
a whole particle or a fraction of its volume penetrates
intermediate region~middle picture in Fig. 1!, its volume
inside this region (Rint,d<Rext) is geometrically calculated
Once the total volume of particles within the intermedia
region is calculated, the total volume fraction~f! of particles
within 0<d<Rext is computed~including the volume of the
central particle!. The diffusion constant of the central partic
can then be calculated from Eq.~7!, using terms accounting
for two-body HI’s up to second order in the volume fractio
expansion@60–62,65,66#.

In order to validate the geometrical procedure previou
described for the local evaluation off @and D(f)], cubic
cells of 125 particles orderly arranged were built. The v
ume fraction of particles in each cell (fcell) can be trivially
calculated andD(f) estimated according to Eq.~7!. Alter-
natively, an external radius (Rext) can be defined around
central particle in the cell andD(f) estimated as a function
of its local f. The local volume fraction@and consequently
D(f)] comes out to be similar tofcell ~Fig. 2!. Similar re-
sults are obtained forRext53a or 5a. Notice that atf
50.50, D(f) decreases fromD0 to 0.20D0 . On the other
hand, the correction of Honiget al. can reduceD(u) from
D0 to 0.005D0 during a binary collision. Hence, if there is a
least one particle within the inner region of a given cent
particle (d<Rint), the expression of Honiget al. @Eqs. ~5!
and ~6!# is used to calculate the diffusion constant of t
central particle regardless of the volume fraction of partic
in the intermediate and outermost regions. If there are m
than one particle within the inner region, only the closest o
is used to computeb from Eq. ~6!.

In summary, the local volume fraction around each p

l

f

ig
or

FIG. 2. In order to validate the geometrical procedure defined
Fig. 1, cubic cells of 0.05<f<0.50 were built. External radii of 5a
and 3a (a53.9mm) were defined around a central particleC. In
either case, the local volume fraction estimated by the geomet
procedure~Fig. 1! came out to be very close to the volume fractio
of particles within the entire cell. Hence, the values ofD (f,d)
calculated are very similar.
8-3
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ticle is used to compute its average diffusion constant. Ho
ever, as can be inferred from the values of Eq.~6! at close
distances and those of Eq.~7! at very highf, the binary
interaction is much more significant at short range. Thus,
solely considered whenever it is present.

COMPUTATIONAL DETAILS

Using the above-mentioned approximations, the BD
pression for the equation of motion of particlei subject to the
average HI is

r i~ t1Dt !5r i~ t !1
Di~f,d!FiDt

kT
1R„Di~f,d!…, ~10!

where R„Di(f,d)… is a Gaussian function with zero mea
and variance 6Di(f,d)Dt. As in the case of Heyes@20#, this
is equivalent to the BD algorithm in the absence of HI
except for the presence of an effective diffusion coefficie

Notice that in Eq.~10! the random deviates of each pa
ticle are now decoupled from one another@see Eq.~4!#. This
simplifies the BD algorithm considerably. In dissipative p
ticle dynamics~DPD! @23,24#, the random force is only un
correlated between different pairs of mesoscopic particles
that case, ‘‘fluid’’ particles interact with dissipative, random
and conservative forces. These forces are connected thr
versatile relations which allow the system to reach equi
rium and even satisfy detailed balance in the limit of infin
tesimal time steps (Dt→0) @67#. In a BD simulation, the
magnitude of the thermal exchange between the particles
the solvent is determined by the size of the random con
butions. These random deviates depend on the time step
are coupled to the conservative forces through the diffus
matrix @third term on the right-hand side of Eq.~4!#. In Ref.
@15# we studied the variation of the thermal exchange
tween the particles and the fluid in the absence of HI’s
was found that in order to reproduce the value of the dif
sion constant at infinite dilution@Eq. ~3!# employing a well-
behaved Gaussian routine, considerably large values of
thermal exchange are required. Since HI’s slow down p
ticle motion, use ofDi(f,d) in Eq. ~10! lowers the average
value of the thermal exchange@15#. In the present simula
tions, for instance, we did not limit the maximum value
the thermal exchange energy (Uex). Still, average values o
3.6, 5.1, 40.5, and 8.8 kT were obtained forUex at f
50.10, 0.20, 0.30, and 0.40, respectively, in the presenc
van der Waals forces. Furthermore, at infinite diluti
D(f,d)→D0 .

In order to test the proposed model, a set of cubic thr
dimensional~3D! cells composed of 125 particles was ge
erated. Volume fractions of~f5! 0.05, 0.10, 0.15, 0.20, 0.30
0.40, and 0.50 were produced, changing the cell length
tween L510.16a and L521.88a (a53.9mm). Particles
were randomly distributed belowf<0.30; cubic arrange-
ments were used otherwise.

Since we are particularly interested in the decrease of
flocculation rate caused by HI’s, the calculations did not
clude repulsive potentials. The attractive van der Waals
tential (V) employed was equal to
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A

12F y

x21xy1x
1

y

x21xy1x1y

12 lnS x21xy1x

x21xy1x1yD G , ~11!

whereA is the Hamaker constant (51.24310219 J @68#!, x
5d/2R1 , y5R2 /R1 , andd is the shortest distance betwee
the particles. The value ofA was experimentally determine
for Bitumen emulsions. As in previous calculations@15–19#,
the particles coalesce as soon as they overlap. When
happens, a new particle is created at the position of the ce
of mass of the colliding ones. The original volume is pr
served, and the diffusion constant of the new particle at
finite dilution is recalculated in terms of the new radius a
cording to Stokes formula@seeD0 in Eq. ~3!#.

For each volume fraction four types of calculations we
made:

~1! Stokes: BD without HI’s. This is equivalent to subst
tute D(f,d) for D0 in Eq. ~10!.

~2! Model: BD with the HI’s of the model proposed.
~3! Batchelor: BD with HI’s employing the mobility func-

tions from Batchelor@40,41#, along with Eqs.~1!, ~2!, and
~4!.

~4! Honig: BD applying the correction of Honiget al.
@Eq. ~6!# between every pair of particles.

Since the random function of calculations~1!, ~2!, and~4!
do not use correlated Brownian forces, we usedR(D0) for
type-3 computations: that is, the random deviates com
with a Gaussian function with zero mean and varian
6D0Dt. It was shown in Ref.@15# that a reasonably large
variation in the magnitude of the random forces does
change the value of the flocculation constant considerab

‘‘Stokes’’ calculations constitute both a standard and
upper bound to the rest of the simulations, since it repres
the movement of noninteracting particles at infinite dilutio
‘‘Honig’’ computations represent a lower bound since Eq.~6!
is strictly applicable to binary collisions, and the cumulati
use of this equation calculated by adding up contributio
from every pair of particles should produce a significant u
derestimation of the flocculation rate. ‘‘Model’’ and ‘‘Batch
elor’’ simulations are the ones we wish to compare. An a
ditional set of simulations withV50, including the different
types of HI’s already mentioned were also run, in order
compare the effect of the effective diffusion constant on
random deviates.

In the case of dilute systems (f,0.10), Honig-type
simulations, orV50 calculations, the computational time
very large. To overcome this problem, we implemented
algorithm with two time steps. A variable time step was p
viously suggested in Ref.@13# in order to sample a short
range ~steric! potential appropriately, but allow larger dis
placements at long separations between the particles. In
present version, the range of the interaction potential is u
as input. It was set equal to 50 nm, since beyond this
tance the van der Waals attraction assumes negligible va
The value of the short time step was taken from previo
simulations@15–19#. In those cases, the same van der Wa
potential@Eq. ~11!# was employed, along with a short-rang
8-4
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AVERAGE HYDRODYNAMIC CORRECTION FOR THE . . . PHYSICAL REVIEW E 68, 061408 ~2003!
repulsive potential. Whenever a high repulsive barrier exi
the time step has to be varied until the number of particle
preserved in the absence of the random force@see Eq.~4!#. In
the present case,ts was taken as 1.3631026 s, although it
could be chosen larger in view of the fact that the poten
changes monotonically with the distance. The longer ti
step could be set arbitrarily high, but the accuracy of
flocculation constant will depend on that value. In t
present simulations, 1.3631026 s<tL<3.4031025 s. Trial
f50.50 simulations atts5tL53.4031027 s were also run.

Once the long (tL) and short (ts) time steps are selected
a double-time-step calculation proceeds as follows: At
beginning of the simulation all particles move attL . The
minimum separation between the particles is calculated
every iteration. If this distance is smaller than twice the p
selected potential width, the particles are returned to th
previous positions, and the shorter time step is used. Foll
ing, the particles move at this lower time step fortL /ts itera-
tions. When this inner cycle finishes, the particles had mo
for a space oftL seconds, going back in phase with th
longer time step formerly used. In this way, the coalesce
of droplets can only occur in the inner cycle, where the
teracting potential is properly sampled. The calculation p
ceeds in this way, entering the inner cycle from time to tim
whenever required.

FLOCCULATION RATES

A recent summary of the mechanisms of emulsion floc
lation can be found in Ref.@69#. In order to estimate the
flocculation constants of the computed systems, a
Smoluchowski@70# equation was used:

n5
n0

11kfn0t
. ~12!

Here, n is the number of particles per unit volume,n0 the
initial particle density,t the time, andkf a flocculation con-
stant. In the absence of interaction forces,

kf
215n0t f5

1

8paD0
5

3h

4kT
. ~13!

At room temperature and taking water as the dispersing
dium, kf is equal to 5.49310218 m3/s. This value increase
in the presence of van der Waals forces and decreases
consequence of repulsive forces and/or HI’s. The variation
clusters of different sizes as a function of time closely f
lows the predictions of von Smoluchowski@70#, although
there is still some discrepancy about the exact values of
flocculation rate constantski j between flocs ofi and j par-
ticles, respectively@54,71–73#. The most precise validation
of the theory come from single@71# and multiparticle@72,73#
light scattering measurements.

Equation~12! strictly applies to the process of floccula
tion only. It does not consider the process of coalescence
may occur at a different rate. We studied in the past ot
formalisms @74,75# to account for coalescence as well
flocculation@18,19#. The generalization of the former trea
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ment@70# including both processes was already published
Danovet al. @76#. The definition of coalescence implies th
existence of a finite time for the drainage of the interven
liquid between colliding drops. However, in our simulatio
both flocculation and coalescence are included in the ef
tive value ofkf . In the present case where coalescence
curs instantaneously after the droplets overlap there is
ambiguity over the nature of the flocculation constant.
more involved cases where there exists a repulsive barrie
a finite drainage time, comparison between the values okf
calculated with and without such a barrier and flux will ev
dence the effect of coalescence on the flocculation rate. S
drops increase their size by coalescence as they collide
similar way as solid particles form bigger flocs with larg
hydrodynamic radii, aggregates weigh the same as larger
ticles in Eq.~12!, andkf can be evaluated using an algorith
that incorporates instantaneous coalescence@15#.

RESULTS

Figure 3 shows the variation of the number of partic
per unit volume~n! as a function of time forf50.05. At low
volume fractions the tensor~Batchelor! and model prediction
~Model! approach Stokes’ result. As expected, the cumu
tive use of the formula of Honiget al. slows down floccula-

FIG. 3. Number of particles per unit volume~n!, as a function of
time ~t! for f50.05. ~a! t<200 s, ~b! t>200 s.
8-5
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tion considerably and sets an upper bound to the variatio
n vs t.

According to Eq.~12!, plot of 1/n vs t should produce a
straight line with a slope equal tokf ~see Fig. 4!. Following
this procedure, values ofkf52.49310217 m3/s (r 2

50.9900) andkf52.36310217 m3/s (r 250.9894) were ob-
tained for Batchelor and Model calculations, respectively.
viewed in Fig. 3 the dispersion of the data increases as
number of particles diminishes. In general, high volume fr
tions and high flocculation rates decrease the quality of
fitting @Eq. ~12!# due to multiple collisions@15–19#. In any
case, only part of the data can be used for the computatio
the flocculation constant. When the number of particles~N!
decreases considerably (N,20), the flocculation behavio
does not obey the predictions of Eq.~12!. A larger number of
particles can diminish this effect by extending the range
usable data. Unfortunately they can also be very time c
suming. Figure 5 shows a plot of 1/n vs t for 1000 particles
at f50.30. This calculation took more than 2 months in

FIG. 4. 1/n vs t for f50.05 @Eq. ~12!#.

FIG. 5. 1/n vs t for f50.15. In this calculation 1000 particle
were used. Neither HI’s nor van der Waals forces were includ
Only random forces were taken into account.
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Dell 5300, employing a single time step, and only a rand
force without HI’s. For this casekf53.77310217 m3/s (r 2

50.9961). This regression coefficient is considerably be
to that of similar calculations with a smaller number of pa
ticle @15#. As shown in Ref.@15#, the value ofkf depends
markedly on the volume fraction, approaching the limit
5.49310218 m3/s as f→0, in the absence of a repulsiv
barrier.

As the volume fraction increases, the chance of a multi
collisions also increases. Figure 6 shows a plot ofn vs t for
f50.20. The present methodology for HI’s varies monoto
cally, sensibly separated from the Stokes prediction. T
Batchelor prediction coincides with the Model prediction u
til t54.22 s (n54.1231014: see Fig. 6!. At that time, over-
estimation of the diffusion matrix elements causes
multiple-particle collision that decreases the density of p
ticles appreciably. Shortly after the drastic drop ofn, the
tensorial prediction recovers the slope of the Model a
proach.

d.

FIG. 6. n vs t for f50.20. The tensor prediction~Batchelor!
undergoes a drastic variation in the number of particles aften
54.1231014 m23 ~arrow! as a consequence of a multiple collisio
induced by the overestimation of HI’s at short distances.

FIG. 7. Tensorial prediction ofn vs t for f50.20, calculated
with ~s! the whole diffusion matrix and~2! the diagonal elements
(Dii ) of the diffusion matrix.
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In order to avoid the referred to anomaly we did seve
tests in which~a! only the diagonal elements of the diffusio
matrix are used,~b! only nondiagonal elements are used,~c!
the values of the diagonal or nondiagonal elements w
multiplied by a number lower than 1.0, and~d! a critical
cutoff radius for the HI’s was defined. In this latter case~d!,
D0 was employed at distances lower thanRcritical , and Batch-
elor tensor was employed otherwise. It appears that the m
overestimation of HI’s comes from the nondiagonal e
ments. Figure 7 shows the complete Batchelor prediction
f50.20~from Fig. 6!, along with the ‘‘diagonal’’ correction.
The anomalous variation inn is avoided, but the flocculation
rate is overestimated. Furthermore, even the most succe
corrections@~a! and ~d!# failed at longer times and/or differ
ent systems. Figure 8 (f50.15) shows that this phenomeno
can also occur in more dilute systems and is rather confi
ration dependent. In this case, the drop in the numbe
particles is so severe that the tensorial prediction comes
to be faster than the Stokes result.

Table I shows the values of the flocculation constant, c
culated from fitting of 1/n vs t plots ~whenever possible!.
The values ofkf for f<0.30 corresponding to the propose
model, Stokes and Honiget al. @47#, increase steadily with
f, while that of the tensor does not. Furthermore, the pre
tions of the model always fall between the limits of Stok

FIG. 8. n as a function of time forf50.15. The overestimation
of HI’s produces an abrupt change in the number of particles
carries the tensorial prediction below the Stokes estimation.

TABLE I. Flocculation constants calculated from linear fits
1/n vs t plots.

f
3100

kf ~m3/s!
Stokes

kf ~m3/s!
Batchelor

kf ~m3/s!
Model

kf ~m3/s!
Honig

5 3.33310217 2.49310217 2.36310217 3.13310218

10 8.24310217 4.15310217 5.49310217 2.87310218

15 1.65310216 1.45310215 1.37310216 9.59310218

20 8.12310216 4.47310216 1.64310216 9.47310218

30 1.29310214 2.22310215 8.09310216 2.59310215
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and Eq.~5!. It should be stressed again that the equations
Honig et al. are only valid for binary collisions. The calcu
lation of coefficientb @in Eq. ~5!# as a sum of binary contri-
butions from all surrounding particles is an approximati
that largely overestimates the effect of HI’s. Hence, the v
ues identified as ‘‘Honig’’ in Tables I and II show difference
of more than one order of magnitude with all the rest.

For volume fractions larger than 0.30, the shape of thn
vs t curves changes significantly. Since each particle
closely surrounded by its neighbors~the maximum volume
fraction is equal tof50.52 for cubic packing of monodis
persed spheres!, its movement is severely affected by HI’
This generates a lag time: a finite time between the be
ning of the simulation and the start of a sharp decreasen
~see Fig. 9!. When the number of particles changes, it d
creases in the form of a step function and does not pre
the characteristic convexity predicted by Eq.~12!. This dras-
tic reduction of the flocculation rate at large volume fractio
is consistent with the decrease in the creaming velocity
similar emulsions (ai50.86mm) for f>0.40 @77#. It could
also be related to the variation of the average droplet siz

at

FIG. 9. At f>0.40, the curves ofn vs t change their shape. A
lag time is generated as a consequence of a severe slow dow
particle movement at the beginning of the simulation. The variat
of n vs t is abrupt. The typical concave shape predicted by Eq.~12!
is not observed.

TABLE II. Flocculation rates deduced from the values oft1/2

through Eq.~14!.

f
3100

kf ~m3/s!
Stokes

kf ~m3/s!
Batchelor

kf ~m3/s!
Model

kf ~m3/s!
Honig

5 5.43310217 2.25310217 2.90310217 3.06310218

10 1.31310216 7.31310217 6.46310217 2.98310218

15 6.89310216 4.18310215 2.59310216 1.39310217

20 1.48310215 2.94310216 2.94310216 1.44310217

30 1.09310214 2.82310215 1.89310215 1.36310216

40 4.89310215 1.79310215 7.36310216 2.26310217

50 7.22310213 2.11310213 2.70310214 2.59310215
8-7
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hydrocarbon oil-water emulsions stabilized wi
b-lactoglobulin@8#. As shown in the Fig. 4a of Ref.@8#, the
average drop size of the emulsion may remain stable un
shearing for a period of 3 h after preparation, increasin
drastically afterwards from 0.36mm to 4.5mm in the follow-
ing 20 min.

It can be observed in Fig. 9 that in contrast to the res
from Fig. 8, Batchelor predictions are slower than Stok
ones. This evidences that the particular behavior of the te
previously referred to depends on the configuration on
surrounding particles and not necessarily on the total volu
fraction of the system. It is important to point out that t
overestimation of HI’s is not due to the specific form of t
mobility functions from Batchelor, since Rotne-Prager’s a
Oseen’s were also tested.

In order to estimate the flocculation constant for hig
volume-fraction calculations, a simple relationship betwe
this variable and the time necessary to diminish the num
of drops to half its original value was used:

kf5
1

n0t1/2
, ~14!

wheret1/25t(n0/2), the time required for the number of pa
ticles, n, to drop to 1

2 n0 . Equation~14! easily follows from
Eq. ~12! substitutingn by n0/2. The values ofkf obtained in
this way are not very accurate due to fast decay in the n
ber of particles with time. When multiple collisions occu
the time for whichn5n0/2 cannot always be determine
Since the number of particles is directly read from the sim
lations, we used the closest approximation ton0/2 whenever
this value was not available. The trends from Tables I an
d

ra

m
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II

are similar, except that the value ofkf predicted by the mode
for f50.40 is lower than that off50.30 for the reasons jus
explained.

CONCLUSIONS

A simple methodology for the calculation of HI’s in
Brownian dynamics simulations of concentrated systems
proposed. The model overcomes the shortcomings of the
sorial calculations previously outlined by Heyes@20#. Spe-
cifically, it clearly avoids overestimation of the HI’s by su
perposition of pair contributions. The calculated values
the flocculation rates appear to be reasonable~the order of
magnitude is appropriate!, although direct comparison with
experimental data from Bitumen emulsions (A51.24
310219 J, a53.9mm @68#! was not possible.

Modifications of the present technique for the treatmen
deformable droplets and particle-wall interactions are p
sible. In a first approximation, the latter case could be trea
using the present methodology. For this case, the volu
fraction of the wall inside the regionRint,d8<Rext could be
included in the local volume fraction calculation around t
particle. At shorter separationsd8,Rint , similar relations as
those of Eqs.~5! and ~6! are expected to hold, since the
were originally deduced for a particle-surface interacti
@45#. However, the coefficients of a rational function for th
HI’s between a particle and a surface can be very differe
This is illustrated in Table 1 of Ref.@48#, in which case, a
third-order rational function was used to substitute the in
nite series result given by Brenner@45,46# for the sphere-
sphere and sphere-plane surface systems.
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